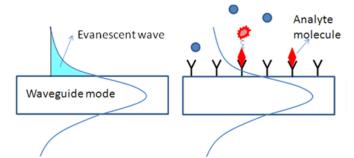
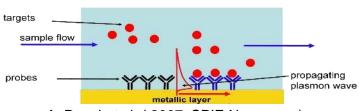


The GRACED device

Evangelia Chatzianagnostou (evachat@csd.auth.gr)


The GRACED device: leveraging photonic and plasmonic technology

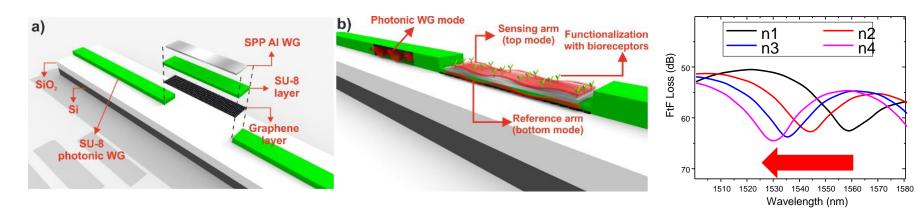
Evanescent wave sensing



• Photonic

✓ Mode partially exposed to environment

Plasmonic


A. Duval et al. (2007, SPIE Newsroom).

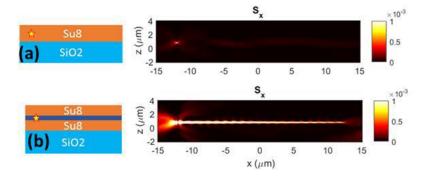
- ✓ SPP mode *fully exposed* to overlying medium
- Enhanced sensitivity compared to evanescent wave photonic sensors!

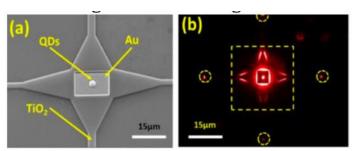
The technology: *Bi-modal* configuration on SU8 platform

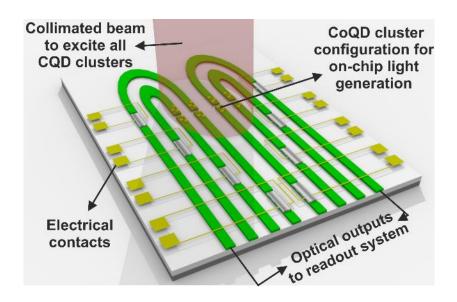
- > Interference between the 2 supported plasmonic modes
 - > Single arm Mach Zehnder

Functionality of graphene

- The graphene layer will offer active control and perform as a variable optical attenuator by electrically tuning the propagation length of the bottom plasmonic mode, balancing losses of the 2 modes
- ► Improvement of extinction ratio (ER) at the output and enhance resolution

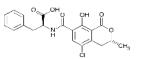



Alignment-free, on-chip light sources

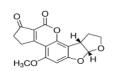

SMART FARMING CONFERENCE

Development of CoQDs structures

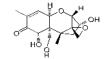
 High index (n=3.5+i0.01) core waveguides for harvesting QDs fluorescence emission.



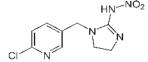
MREs and sensor surface functionalization



Antibodies (polyclonal and monoclonal) will be used as molecular recognition elements (MREs) for the selected microbiological and chemical contaminants


Target contaminants

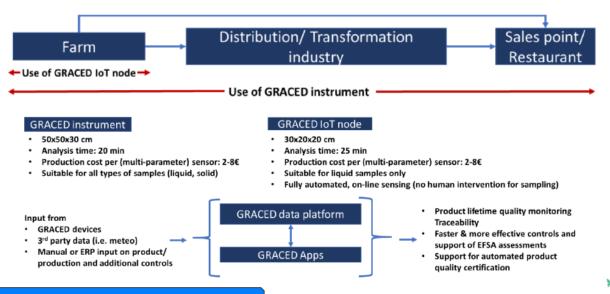
1. Ochratoxin A


2. Aflatoxin B2

3. Deoxynivalenol

4. Acrylamide

7. Imidacloprid



Final devices

- **1. GRACED instrument:** a portable instrument for lab & field analysis of all types of samples
- **2. GRACED IoT node:** an autonomous sensing node to be deployed for unattended field measurements in water/liquid samples only, particularly useful for production systems that foresee minimum human intervention (such as vertical/urban farming). This second device will include automated sampling & biosensors regeneration (at least 10 times).

Benefits

- Compact bimodal plasmo-photonic sensor
- **Label-free** detection
- ❖ Real-time and *fast* operation: 20-25min
- ❖ High bulk sensitivity: > 25000 nm/RIU
- High-sensitivity (target 95%) and high-specificity (target 90%)
- Low-cost
- Multiplexing capabilities: 7 analytes

THANK YOU!